3.473 \(\int \frac {\cos (c+d x)}{(a+b \cos (c+d x))^3} \, dx\)

Optimal. Leaf size=134 \[ \frac {\left (a^2+2 b^2\right ) \sin (c+d x)}{2 d \left (a^2-b^2\right )^2 (a+b \cos (c+d x))}+\frac {a \sin (c+d x)}{2 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}-\frac {3 a b \tan ^{-1}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{d (a-b)^{5/2} (a+b)^{5/2}} \]

[Out]

-3*a*b*arctan((a-b)^(1/2)*tan(1/2*d*x+1/2*c)/(a+b)^(1/2))/(a-b)^(5/2)/(a+b)^(5/2)/d+1/2*a*sin(d*x+c)/(a^2-b^2)
/d/(a+b*cos(d*x+c))^2+1/2*(a^2+2*b^2)*sin(d*x+c)/(a^2-b^2)^2/d/(a+b*cos(d*x+c))

________________________________________________________________________________________

Rubi [A]  time = 0.12, antiderivative size = 134, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.210, Rules used = {2754, 12, 2659, 205} \[ \frac {\left (a^2+2 b^2\right ) \sin (c+d x)}{2 d \left (a^2-b^2\right )^2 (a+b \cos (c+d x))}+\frac {a \sin (c+d x)}{2 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}-\frac {3 a b \tan ^{-1}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{d (a-b)^{5/2} (a+b)^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]/(a + b*Cos[c + d*x])^3,x]

[Out]

(-3*a*b*ArcTan[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/((a - b)^(5/2)*(a + b)^(5/2)*d) + (a*Sin[c + d*x])
/(2*(a^2 - b^2)*d*(a + b*Cos[c + d*x])^2) + ((a^2 + 2*b^2)*Sin[c + d*x])/(2*(a^2 - b^2)^2*d*(a + b*Cos[c + d*x
]))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 2659

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[(2*e)/d, Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 2754

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> -Simp[((
b*c - a*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(f*(m + 1)*(a^2 - b^2)), x] + Dist[1/((m + 1)*(a^2 - b^2
)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[(a*c - b*d)*(m + 1) - (b*c - a*d)*(m + 2)*Sin[e + f*x], x], x], x] /
; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && IntegerQ[2*m]

Rubi steps

\begin {align*} \int \frac {\cos (c+d x)}{(a+b \cos (c+d x))^3} \, dx &=\frac {a \sin (c+d x)}{2 \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}-\frac {\int \frac {2 b-a \cos (c+d x)}{(a+b \cos (c+d x))^2} \, dx}{2 \left (a^2-b^2\right )}\\ &=\frac {a \sin (c+d x)}{2 \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}+\frac {\left (a^2+2 b^2\right ) \sin (c+d x)}{2 \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))}+\frac {\int -\frac {3 a b}{a+b \cos (c+d x)} \, dx}{2 \left (a^2-b^2\right )^2}\\ &=\frac {a \sin (c+d x)}{2 \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}+\frac {\left (a^2+2 b^2\right ) \sin (c+d x)}{2 \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))}-\frac {(3 a b) \int \frac {1}{a+b \cos (c+d x)} \, dx}{2 \left (a^2-b^2\right )^2}\\ &=\frac {a \sin (c+d x)}{2 \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}+\frac {\left (a^2+2 b^2\right ) \sin (c+d x)}{2 \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))}-\frac {(3 a b) \operatorname {Subst}\left (\int \frac {1}{a+b+(a-b) x^2} \, dx,x,\tan \left (\frac {1}{2} (c+d x)\right )\right )}{\left (a^2-b^2\right )^2 d}\\ &=-\frac {3 a b \tan ^{-1}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{(a-b)^{5/2} (a+b)^{5/2} d}+\frac {a \sin (c+d x)}{2 \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}+\frac {\left (a^2+2 b^2\right ) \sin (c+d x)}{2 \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.38, size = 115, normalized size = 0.86 \[ \frac {\frac {\sin (c+d x) \left (b \left (a^2+2 b^2\right ) \cos (c+d x)+a \left (2 a^2+b^2\right )\right )}{(a+b \cos (c+d x))^2}+\frac {6 a b \tanh ^{-1}\left (\frac {(a-b) \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {b^2-a^2}}\right )}{\sqrt {b^2-a^2}}}{2 d (a-b)^2 (a+b)^2} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]/(a + b*Cos[c + d*x])^3,x]

[Out]

((6*a*b*ArcTanh[((a - b)*Tan[(c + d*x)/2])/Sqrt[-a^2 + b^2]])/Sqrt[-a^2 + b^2] + ((a*(2*a^2 + b^2) + b*(a^2 +
2*b^2)*Cos[c + d*x])*Sin[c + d*x])/(a + b*Cos[c + d*x])^2)/(2*(a - b)^2*(a + b)^2*d)

________________________________________________________________________________________

fricas [B]  time = 0.86, size = 555, normalized size = 4.14 \[ \left [-\frac {3 \, {\left (a b^{3} \cos \left (d x + c\right )^{2} + 2 \, a^{2} b^{2} \cos \left (d x + c\right ) + a^{3} b\right )} \sqrt {-a^{2} + b^{2}} \log \left (\frac {2 \, a b \cos \left (d x + c\right ) + {\left (2 \, a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} - 2 \, \sqrt {-a^{2} + b^{2}} {\left (a \cos \left (d x + c\right ) + b\right )} \sin \left (d x + c\right ) - a^{2} + 2 \, b^{2}}{b^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + a^{2}}\right ) - 2 \, {\left (2 \, a^{5} - a^{3} b^{2} - a b^{4} + {\left (a^{4} b + a^{2} b^{3} - 2 \, b^{5}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{4 \, {\left ({\left (a^{6} b^{2} - 3 \, a^{4} b^{4} + 3 \, a^{2} b^{6} - b^{8}\right )} d \cos \left (d x + c\right )^{2} + 2 \, {\left (a^{7} b - 3 \, a^{5} b^{3} + 3 \, a^{3} b^{5} - a b^{7}\right )} d \cos \left (d x + c\right ) + {\left (a^{8} - 3 \, a^{6} b^{2} + 3 \, a^{4} b^{4} - a^{2} b^{6}\right )} d\right )}}, -\frac {3 \, {\left (a b^{3} \cos \left (d x + c\right )^{2} + 2 \, a^{2} b^{2} \cos \left (d x + c\right ) + a^{3} b\right )} \sqrt {a^{2} - b^{2}} \arctan \left (-\frac {a \cos \left (d x + c\right ) + b}{\sqrt {a^{2} - b^{2}} \sin \left (d x + c\right )}\right ) - {\left (2 \, a^{5} - a^{3} b^{2} - a b^{4} + {\left (a^{4} b + a^{2} b^{3} - 2 \, b^{5}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{2 \, {\left ({\left (a^{6} b^{2} - 3 \, a^{4} b^{4} + 3 \, a^{2} b^{6} - b^{8}\right )} d \cos \left (d x + c\right )^{2} + 2 \, {\left (a^{7} b - 3 \, a^{5} b^{3} + 3 \, a^{3} b^{5} - a b^{7}\right )} d \cos \left (d x + c\right ) + {\left (a^{8} - 3 \, a^{6} b^{2} + 3 \, a^{4} b^{4} - a^{2} b^{6}\right )} d\right )}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)/(a+b*cos(d*x+c))^3,x, algorithm="fricas")

[Out]

[-1/4*(3*(a*b^3*cos(d*x + c)^2 + 2*a^2*b^2*cos(d*x + c) + a^3*b)*sqrt(-a^2 + b^2)*log((2*a*b*cos(d*x + c) + (2
*a^2 - b^2)*cos(d*x + c)^2 - 2*sqrt(-a^2 + b^2)*(a*cos(d*x + c) + b)*sin(d*x + c) - a^2 + 2*b^2)/(b^2*cos(d*x
+ c)^2 + 2*a*b*cos(d*x + c) + a^2)) - 2*(2*a^5 - a^3*b^2 - a*b^4 + (a^4*b + a^2*b^3 - 2*b^5)*cos(d*x + c))*sin
(d*x + c))/((a^6*b^2 - 3*a^4*b^4 + 3*a^2*b^6 - b^8)*d*cos(d*x + c)^2 + 2*(a^7*b - 3*a^5*b^3 + 3*a^3*b^5 - a*b^
7)*d*cos(d*x + c) + (a^8 - 3*a^6*b^2 + 3*a^4*b^4 - a^2*b^6)*d), -1/2*(3*(a*b^3*cos(d*x + c)^2 + 2*a^2*b^2*cos(
d*x + c) + a^3*b)*sqrt(a^2 - b^2)*arctan(-(a*cos(d*x + c) + b)/(sqrt(a^2 - b^2)*sin(d*x + c))) - (2*a^5 - a^3*
b^2 - a*b^4 + (a^4*b + a^2*b^3 - 2*b^5)*cos(d*x + c))*sin(d*x + c))/((a^6*b^2 - 3*a^4*b^4 + 3*a^2*b^6 - b^8)*d
*cos(d*x + c)^2 + 2*(a^7*b - 3*a^5*b^3 + 3*a^3*b^5 - a*b^7)*d*cos(d*x + c) + (a^8 - 3*a^6*b^2 + 3*a^4*b^4 - a^
2*b^6)*d)]

________________________________________________________________________________________

giac [B]  time = 0.63, size = 271, normalized size = 2.02 \[ \frac {\frac {3 \, {\left (\pi \left \lfloor \frac {d x + c}{2 \, \pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\left (-2 \, a + 2 \, b\right ) + \arctan \left (-\frac {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{\sqrt {a^{2} - b^{2}}}\right )\right )} a b}{{\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} \sqrt {a^{2} - b^{2}}} + \frac {2 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - a^{2} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + a b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 2 \, b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 2 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + a^{2} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + a b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2 \, b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} {\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a + b\right )}^{2}}}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)/(a+b*cos(d*x+c))^3,x, algorithm="giac")

[Out]

(3*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(-2*a + 2*b) + arctan(-(a*tan(1/2*d*x + 1/2*c) - b*tan(1/2*d*x + 1/2*c
))/sqrt(a^2 - b^2)))*a*b/((a^4 - 2*a^2*b^2 + b^4)*sqrt(a^2 - b^2)) + (2*a^3*tan(1/2*d*x + 1/2*c)^3 - a^2*b*tan
(1/2*d*x + 1/2*c)^3 + a*b^2*tan(1/2*d*x + 1/2*c)^3 - 2*b^3*tan(1/2*d*x + 1/2*c)^3 + 2*a^3*tan(1/2*d*x + 1/2*c)
 + a^2*b*tan(1/2*d*x + 1/2*c) + a*b^2*tan(1/2*d*x + 1/2*c) + 2*b^3*tan(1/2*d*x + 1/2*c))/((a^4 - 2*a^2*b^2 + b
^4)*(a*tan(1/2*d*x + 1/2*c)^2 - b*tan(1/2*d*x + 1/2*c)^2 + a + b)^2))/d

________________________________________________________________________________________

maple [B]  time = 0.05, size = 475, normalized size = 3.54 \[ \frac {2 a^{2} \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d \left (a \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +a +b \right )^{2} \left (a -b \right ) \left (a^{2}+2 a b +b^{2}\right )}+\frac {a \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b}{d \left (a \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +a +b \right )^{2} \left (a -b \right ) \left (a^{2}+2 a b +b^{2}\right )}+\frac {2 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b^{2}}{d \left (a \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +a +b \right )^{2} \left (a -b \right ) \left (a^{2}+2 a b +b^{2}\right )}+\frac {2 a^{2} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d \left (a \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +a +b \right )^{2} \left (a +b \right ) \left (a^{2}-2 a b +b^{2}\right )}-\frac {a \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) b}{d \left (a \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +a +b \right )^{2} \left (a +b \right ) \left (a^{2}-2 a b +b^{2}\right )}+\frac {2 \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) b^{2}}{d \left (a \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +a +b \right )^{2} \left (a +b \right ) \left (a^{2}-2 a b +b^{2}\right )}-\frac {3 a b \arctan \left (\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (a -b \right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{d \left (a^{4}-2 a^{2} b^{2}+b^{4}\right ) \sqrt {\left (a -b \right ) \left (a +b \right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)/(a+b*cos(d*x+c))^3,x)

[Out]

2/d*a^2/(a*tan(1/2*d*x+1/2*c)^2-tan(1/2*d*x+1/2*c)^2*b+a+b)^2/(a-b)/(a^2+2*a*b+b^2)*tan(1/2*d*x+1/2*c)^3+1/d/(
a*tan(1/2*d*x+1/2*c)^2-tan(1/2*d*x+1/2*c)^2*b+a+b)^2*a/(a-b)/(a^2+2*a*b+b^2)*tan(1/2*d*x+1/2*c)^3*b+2/d/(a*tan
(1/2*d*x+1/2*c)^2-tan(1/2*d*x+1/2*c)^2*b+a+b)^2/(a-b)/(a^2+2*a*b+b^2)*tan(1/2*d*x+1/2*c)^3*b^2+2/d*a^2/(a*tan(
1/2*d*x+1/2*c)^2-tan(1/2*d*x+1/2*c)^2*b+a+b)^2/(a+b)/(a^2-2*a*b+b^2)*tan(1/2*d*x+1/2*c)-1/d/(a*tan(1/2*d*x+1/2
*c)^2-tan(1/2*d*x+1/2*c)^2*b+a+b)^2*a/(a+b)/(a^2-2*a*b+b^2)*tan(1/2*d*x+1/2*c)*b+2/d/(a*tan(1/2*d*x+1/2*c)^2-t
an(1/2*d*x+1/2*c)^2*b+a+b)^2/(a+b)/(a^2-2*a*b+b^2)*tan(1/2*d*x+1/2*c)*b^2-3/d*a*b/(a^4-2*a^2*b^2+b^4)/((a-b)*(
a+b))^(1/2)*arctan(tan(1/2*d*x+1/2*c)*(a-b)/((a-b)*(a+b))^(1/2))

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)/(a+b*cos(d*x+c))^3,x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*b^2-4*a^2>0)', see `assume?`
 for more details)Is 4*b^2-4*a^2 positive or negative?

________________________________________________________________________________________

mupad [B]  time = 3.15, size = 207, normalized size = 1.54 \[ \frac {\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3\,\left (2\,a^2+a\,b+2\,b^2\right )}{{\left (a+b\right )}^2\,\left (a-b\right )}+\frac {\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (2\,a^2-a\,b+2\,b^2\right )}{\left (a+b\right )\,\left (a^2-2\,a\,b+b^2\right )}}{d\,\left (2\,a\,b+{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2\,\left (2\,a^2-2\,b^2\right )+{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4\,\left (a^2-2\,a\,b+b^2\right )+a^2+b^2\right )}-\frac {3\,a\,b\,\mathrm {atan}\left (\frac {\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (2\,a-2\,b\right )\,\left (a^2-2\,a\,b+b^2\right )}{2\,\sqrt {a+b}\,{\left (a-b\right )}^{5/2}}\right )}{d\,{\left (a+b\right )}^{5/2}\,{\left (a-b\right )}^{5/2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)/(a + b*cos(c + d*x))^3,x)

[Out]

((tan(c/2 + (d*x)/2)^3*(a*b + 2*a^2 + 2*b^2))/((a + b)^2*(a - b)) + (tan(c/2 + (d*x)/2)*(2*a^2 - a*b + 2*b^2))
/((a + b)*(a^2 - 2*a*b + b^2)))/(d*(2*a*b + tan(c/2 + (d*x)/2)^2*(2*a^2 - 2*b^2) + tan(c/2 + (d*x)/2)^4*(a^2 -
 2*a*b + b^2) + a^2 + b^2)) - (3*a*b*atan((tan(c/2 + (d*x)/2)*(2*a - 2*b)*(a^2 - 2*a*b + b^2))/(2*(a + b)^(1/2
)*(a - b)^(5/2))))/(d*(a + b)^(5/2)*(a - b)^(5/2))

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)/(a+b*cos(d*x+c))**3,x)

[Out]

Timed out

________________________________________________________________________________________